edexcel

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives **Textbook:** Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

Example 1	Make <i>t</i> the subject of the formula $v = u + at$.
-----------	---

v = u + at $v - u = at$	1 Get the terms containing <i>t</i> on one side and everything else on the other side.
$t = \frac{v - u}{a}$	2 Divide throughout by <i>a</i> .

Example 2 Make *t* the subject of the formula $r = 2t - \pi t$.

$r = 2t - \pi t$	1 All the terms containing <i>t</i> are already on one side and everything else is on the other side.	
$r=t(2-\pi)$	2 Factorise as <i>t</i> is a common factor.	
$t = \frac{r}{2 - \pi}$	3 Divide throughout by $2 - \pi$.	

Example 3 Make *t* the subject of the formula $\frac{t+r}{5} = \frac{3t}{2}$.

$\frac{t+r}{5} = \frac{3t}{2}$	1 Remove the fractions first by multiplying throughout by 10.
2t + 2r = 15t $2r = 13t$	2 Get the terms containing <i>t</i> on one side and everything else on the other side and simplify.
$t = \frac{2r}{13}$	3 Divide throughout by 13.

edexcel

$r = \frac{3t+5}{t-1}$	1 Remove the fraction first by multiplying throughout by $t - 1$.
r(t-1) = 3t+5 $rt - r = 3t+5$	2 Expand the brackets.
rt - r = 3t + 5	3 Get the terms containing t on one
rt - 3t = 5 + r	side and everything else on the other side.
$rt - 3t = 5 + r$ $t(r - 3) = 5 + r$ $t = \frac{5 + r}{r - 3}$	4 Factorise the LHS as <i>t</i> is a common
5+r	factor. 5 Divide throughout by $r - 3$.

Example 4 Make *t* the subject of the formula $r = \frac{3t+5}{t-1}$

Practice

Change the subject of each formula to the letter given in the brackets.

 $C = \pi d \quad [d]$ $P = 2l + 2w \quad [w]$ $D = \frac{S}{T} \quad [T]$ $p = \frac{q - r}{t} \quad [t]$ $u = at - \frac{1}{2}t \quad [t]$ $V = ax + 4x \quad [x]$ $\frac{y - 7x}{2} = \frac{7 - 2y}{3} \quad [y]$ $x = \frac{2a - 1}{3 - a} \quad [a]$ $x = \frac{b - c}{d} \quad [d]$ $h = \frac{7g - 9}{2 + g} \quad [g]$ $e(9 + x) = 2e + 1 \quad [e]$ $y = \frac{2x + 3}{4 - x} \quad [x]$

13 Make *r* the subject of the following formulae.

a $A = \pi r^2$ **b** $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

14 Make *x* the subject of the following formulae.

a
$$\frac{xy}{z} = \frac{ab}{cd}$$
 b $\frac{4\pi cx}{d} = \frac{3z}{py^2}$

15 Make sin *B* the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$

16 Make $\cos B$ the subject of the formula $b^2 = a^2 + c^2 - 2ac \cos B$.

Extend

17 Make *x* the subject of the following equations.

a
$$\frac{p}{q}(sx+t) = x-1$$

b $\frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$

edexcel

Answers

1	$d = \frac{C}{\pi}$	2	$w = \frac{P - 2l}{2}$	3	$T = \frac{S}{D}$
4	$t = \frac{q - r}{p}$	5	$t = \frac{2u}{2a - 1}$	6	$x = \frac{V}{a+4}$
7	y = 2 + 3x	8	$a = \frac{3x+1}{x+2}$	9	$d = \frac{b-c}{x}$
10	$g = \frac{2h+9}{7-h}$	11	$e = \frac{1}{x+7}$	12	$x = \frac{4y - 3}{2 + y}$
13	a $r = \sqrt{\frac{A}{\pi}}$	b	$r = \sqrt[3]{\frac{3V}{4\pi}}$		
	$\mathbf{c} \qquad r = \frac{P}{\pi + 2}$	d	$r = \sqrt{\frac{3V}{2\pi h}}$		
14	a $x = \frac{abz}{cdy}$	b	$x = \frac{3dz}{4\pi cpy^2}$		
15	$\sin B = \frac{b \sin A}{a}$				
16	$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$				
17	a $x = \frac{q+pt}{q-ps}$	b	$x = \frac{3py + 2pqy}{3p - apq} =$	$\frac{y(3+2a)}{3-aq}$	$\frac{q}{d}$

